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The results of the application of rational thermodynamics to a reacting fluid mixture from the 
preceding work are compared explicitly with the theories of irreversible thermodynamics and equi-
librium thermodynamics of mixtures. The principle of local equilibrium can be in this way derived, 
provided that the thermodynamic pressure in a chemically reacting viscous mixture need not have 
the common physical meaning and a complete agreement with the classical thermochemistry of 
mixtures is achieved only after a certain form invariance of the starting postulate is made use of. 
Equations for the transport phenomena have (or can be transformed to) the common linear form, 
but the results are not restricted to the linear relations for chemical reaction rates and no interac-
tion between them and the linear friction exists. The Onsager relations (between diffusion and heat 
fluxes) do not follow from the studied material model, however they can be obtained after intro-
ducing additional simple assumptions. In the case of equilibrium, we obtain the results of the clas-
sical thermodynamics of mixtures. 

In the preceding communication1 we applied the method of Truesdell's school2 , 3 to reacting 
fluid mixtures with linear transport properties. This material represents a classical case treated 
by the older theories — irreversible thermodynamics and equilibrium thermodynamics of mixtures. 

In the present work we shall compare explicitly the results of these older theories 
with those of rational thermodynamics from the preceding communication1. 
Such a comparison has been discussed in other rational-thermodynamical studies 
( r e f s 1 ' 5 " 9 , 1 1 ' 1 2 , 1 6 - 1 8 in ref.1) but these are all restricted (if we disregard nonlinearity) 
to a more special case than that studied in the present work. 

By a suitable definition of the partial thermodynamic pressure (which in a-chemically 
reacting viscous fluid mixture need not have the common physical meaning of a partial 
pressure) and other thermodynamic quantities we obtain a majority of classical 
thermodynamic relations {e.g., the Gibbs equation), but the Gibbs-Duhem equation 
holds only for the chemical potential. The question about the validity of this equation 
in nonuniform systems (with space gradients of the properties) is namely not trivial5 '6 

(ref.4, paragraph 260). To solve this problem here, we shall make use of a certain 
form invariance7,8 of a priori introduced quantities in ref.1 consisting in that some 
of them can be supplemented by two sets of arbitrary functions of temperature and 
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densities without changing the form of general postulates and constitutive equations 
and hence without changing the form of the relations derived from them. 

By a suitable choice of these functions it can be achieved that the Gibbs-Duhem 
equations hold for all partial thermodynamic quantities, hence a complete accord 
with the structure of the classical thermochemistry of mixture can be achieved and 
the validity of the local equilibrium principle of irreversible thermodynamics for the 
studied material can be proved. By such a choice the partial quantities are in agreement 
with the classical definitions in an equilibrium uniform thermodynamic system. 

The constitutive equations for chemical reactions derived in ref.1 can be modified 
with the aid of the vector notation of chemical reactions9 to an expression which is 
generally nonlinear with respect to affinities. The mentioned constitutive equations 
are independent of the deformation rate tensors, i.e., no interaction between chemical 
reactions and linear friction (assumed in irreversible thermodynamics10) exists. 

The concept of an equilibrium must be introduced in rational thermodynamics by 
a suitable definition2,3. The definition chosen here involves the results of the classical 
theory — equilibria in centrifugal and external force fields and equilibrium in 
a uniform system. 

The results of irreversible thermodynamics (based on equal conservation 
laws)11,12 agree with those obtained here if we take into consideration the known 
concept of the thermodynamic pressure and partial quantities. The Onsager reciprocal 
relations (which must be postulated in phenomenological irreversible thermo-
dynamics12) between the diffusion and heat fluxes follow only after additional simple 
assumptions are introduced. 

We shall write vectors and tensors in the physical space in the component form in 
cartesian coordinates (subscripts i, j, k,...) and assume the validity of the summation 
convention for them. The mixture constituents will be denoted by Greek superscripts. 
Deviations from these rules are mentioned in the section about chemical reactions. 

Symbols such as (1 — 10) refer to equations (here Eq. (10)) in the preceding com-
munication1, from which the mathematical symbols are used also in the present 
work. 

Thermodynamic Structure and Form Invariance 

We shall discuss only the ''thermodynamic" relations obtained previously1, viz., 
(1 -24), (1 - 41)-(1 -43), (1 -45)-(1-52), and supplement them with the following 
definitions (it follows from the results1 that all these quantities are functions only of 
temperature Tand densities of the constituents g1, g2, ..., g"): 

Partial thermodynamic pressure F* of the constituent a in an n-component mixture 

P* = n* + p\ oc = 1, 2, ..., n , (1) 
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where if denotes partial pressure in the constitutive equation for the partial stress 
tensor (2 — 22) and pa is defined by Eq. (2 —38). 

With the use of the quantity Pa, further considerations are analogous as with 
nonreacting mixtures7,8 (as already shown1, in this case Eq. (2—56) holds, hence 
both partial pressures become identical), therefore we shall mention them only 
briefly. 

We define the thermodynamic pressure P 

P = t p * (2) 
a = l 

and further the partial volume va and partial enthalpy ha of the constituent a 

v' = P*IPq* ha = u* + Pva , (3), (4) 

where a = 1 , 2 , . . . , « and ua denotes partial internal energy. 
If we denote the partial quantities ux, h", v*, sa (partial entropy), fa (partial free 

energy), ff (specific chemical potential) as y w e can the corresponding specific 
quantities of the mixture u (internal energy), h (enthalpy), v (volume), s (entropy), 
/ (free energy) and g (free enthalpy), represented by the symbol y, define as 

y = t ™aya > W 
et= 1 

where wa means mass fraction (compare (2 —46) — (1 —48)). By means of these 
relations we can derive the classical ones, such as 

H"=f + P i f , a = l ; 2 { 6 ) 

which is in substance Eq. (2 — 52), 

» = 1 fa, g = u — Ts + Pv (7), (8) 

(io means density of the mixture according to (2 - 45)), various forms of the Gibbs 
equation 

d (df)= -QsdT+Ysf&Q", (9) 
a= 1 

n-1 

d« = Tds - P dv + X ( / - jO , (10) 
s = l 

n-1 

dg = —s dT + v dP + £ ( / - na) dwp (22) 
s = 1 
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and the Gibbs-Duhem equation for the chemical potential 

- s d T + vdP - £ w*dna = 0 . (12) 
a = 1 

Further we can derive the expression 

P* =Qateyd1ra> a = 1 ,2 , . . . ,» ! . (75) r= i 

(The sign ^ will mean that the quantity so denoted will be understood as a function 
of T, Q\ Q2, ..., QN - compare (1-28)). With the aid of Eqs (13), (1-36), (1-49), 
(1 —52) and (l) we obtain 

£ co^ = dPp - Qp d/ + ^ dT, (14) 
r=i <3T 

X E 0JPy = —dPa + Qn d/in - <?n ^ dT, (15) 
p=ly=l 3T 

where /? = 1, 2, ..., n-1 and coPy are coefficients in the constitutive equations (1—21). 
In all such relations it is possible to replace the differential operator by time, space 

or substantial derivatives since all quantities in them are functions1 of the observer's 
coordinate and time t. 

With respect to Eq. (2), P is a function of T, Q1, Q2, ..., QN and hence according to 
(1—46) and (7) it is also a function of T, v, w1, w2, ..., wn _ 1 . If we assume that there 
exists an inversion of this function with respect to v, we can (with regard to the 
mentioned relations) express any function of T q1 , q2 , ..., Qn as a function of T, P, 
w1, w2, ..., w n _ 1 . Such a function will be denoted by the sign for example 

y = y(T, P, w1, w2, ..., w""1) = y(T, P, v/) ; 

f = y\T, P, O, ct = 1,2, n; fi = 1,2,..., n — 1 . (16) 

All the formulas mentioned up to now are the same as in classical thermochemistry of 
mixtures (in specific quantities). However, there is the following inconsistency: The 
quantities ya do not fulfil the classical Gibbs-Duhem equation (except for \ Eq. (12)) 

^ dT + dP - X w* dy* = 0 (17) 
dT dP « = i 

and the classical relation 
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TLB = yp - y \ p = 1,2, n — 1 (18) owp 

as far as the following additional condition is not fulfilled: 

2 > a ! 4 = 0 ' P = l,2,...,n-1 (19) a = 1 dWP 

(as follows from Eqs (5) and (16)). Nevertheless, we shall show that this condition 
can be always fulfilled owing to the invariance of the form of the equations mentioned 
up to now with respect to two sets of n — 1 arbitrary functions of T, g1, q2, ..., gn 

(which can be differentiated and have the dimensions of energy and entropy), 

um = a«0(T) } s(« = q°), a = 1 2 , . . . , n - 1 (20) 

if instead of the original quantities listed in ref.1 new, primed quantities are introduced: 

u" = u* +n£Va - wp) uW , (21) 
p=i 

P=1 

p = i s = 1 

OX J P=1 

r j = t.* + [ / s V " - v/)/(/J)] sls. 
p=i 

Here a = 1,2, ..., n and we defined 

fm = uw _ Ts(P) f p = l j 2 , . . . , „ _ 1 (26) 

and used the definitions (1—45), (1-46) and the diffusion velocity V? (1—14); Jx 

denotes heat flux, 7)] partial stress tensor of constituent a, h* force by which 
other constituents act upon constituent a; <5U, d6p and 3pa are Kronecker delta symbols. 
Other quantities of those listed in ref.1 remain without change. 

Indeed, by this transformation the forms of the basic postulates (l — l), (1—3), 
(l — 7) — (l —11) do not change, and also the considerations about constitutive 

(22) 

(23) 

(24) 

(25) 
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equations remain the same, i.e., their resulting form and the form of all other relations 
(by using suitable definitions of the primed quantities) remains the same7 '8. 

Since the transformation (20) — (26) does not change the form of the general postu-
lates, we can expect analogous invariant behaviour also in other material models. 

The physical meaning of the form invariance consists in that the invariant quantities 
{e.g., y, P, na) are directly measurable quantities of mixtures (or are derivable from 
them), whereas the noninvariant ones (e.g., ya, Pa) are without additional assumptions 
not experimentally accessible. Indeed (compare Eqs (3), (4), (20), (26), (l — 45) and 
(1—49)) we obtain for such quantities 

y " = y + x V * - wp) / « , a = 1,2, ..., n , (27) 
p = i 

where y(P) represents (according to the choice of j a) u(p\ s(/J), f(P\ viP) = —f(P)/P, 
H{P) = 0 (the chemical potential is an invariant, cf. (1—49)), or (cf. (13)) 

n - 1 

P" =p* - q'Y, (SaP - , a = 1, 2,..., n , (28) 
p = i 

and so on7 , 8 . 

It should be noted that Eq. (23) for the heat flux involves all common formulations 
of this quantity in irreversible thermodynamics (ref.10, chapter III/3). 

We shall now use this invariance to obtain the additional condition (19) for the 
primed quantities y'a. We choose the functions (20) as follows: 

= f wa dyaldwp , fi = 1, 2, ..., n - 1 . (29) 
B = 1 

Here y{p) means u(P) and s(P), but it can be shown7 '8 from the definitions of y'a that 
this expression holds also with other meanings of y(p\ On introducing Eq. (29) into 
(27), the validity of (19) for the primed quantities y'a can be checked. 

In further text we therefore assume that y'a was found and so the condition (19) 
is valid for the partial quantities ya used (such quantities will not be further denoted 
with a comma). 

Now the validity of the general Gibbs-Duhem equation (17) and Eq. (18) can hence 
be assumed. From (l —46), (5), (11) and (18) we obtain the classical relations 

dfi'ldT = -s" , dpf/dP = va, oc = 1, 2, ..., n . (30), (31) 

It should be noted that owing to Eq. (30) an expression analogous to (1—50) in 
partial quantities is generally invalid. 
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Chemical Reactions 

In this section we shall discuss the results of the preceding work1 related to chemical 
reactions, (1-40) and (2 -55 ) , by the Bowen's method2 , 9 '1 3 , 1 5 . Since we shall use 
rectilinear vector bases, vectors will be denoted by superscripts and subscripts. 

We shall assume that a molecular mass M a can be a priori assigned to each cons-
tituent a = 1 , 2 , . . . , n and that the constituents are composed of z chemical elements 
with atomic masses Aa (a> = 1, 2 , z ) : 

Ma = t T^A" , a = 1,2, . . ., n . (32) 
( 0 = 1 

We now postulate the permanence of the chemical elements in chemical reactions: 

S / X a = 0 , co = l , 2 , . . . , z , (33) 
n=l 

where we define 

/ * = r*/Ma, a — 1,2, n (34) 

(ra is the mass of constituent a produced in a time unit and a volume unit by chemical 
reactions). By combining Eqs (32) —(34) we naturally obtain the mass conservation 
law (1-8) (see also Eq. (40)). 

In further text only such equations of (33) have significance which are linearly 
independent, or their linearly independent combinations. Their number is equal to 
the rank h of the matrix U t J , hence the permanence of the chemical elements can 
be expressed as 

t s x S m t = 0 , a) = 1 , 2 , . . . , / ! , (35) 
a= I 

where the h x n matrix jS^W formed in the described manner from llT^J has the 
rank h. 

We now consider an abstract, n-dimensional linear vector space of constituents of 
the mixture, (JU, with a base ea and a reciprocal base ea (oc = 1, 2, . . . , n). We define 
in it: the molar mass vector M and the reaction rate vector $ 

M = f ; Mae* , f = t / X (36), (37) 
a = 1 a = 1 

and h vectors fa given by 

L = tsco«ea, « = l,2,...,h. (38) 
a= 1 
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Since the matrix \\Saa\\ has the rank h, these vectors are linearly independent and 
therefore form a base of an /i-dimensional subspace if in the space of the constituents 
fy. This subspace if determines in the space ^U uniquely a complementary orthogonal 
(n — /j)-dimensional subspace, which we shall call the reaction subspace V . 

Bowen2,9 showed that the permanence of chemical elements in chemical reactions 
(35) can be expressed in an equivalent form as follows. The molar mass vector M 
lies in the subspace if and the vector of reaction rates # lies always in the reaction 
subspace "f of the consituent space m, i.e. 

M e f , f g r , (39) 

where if ± Y and if © V = (© denotes direct sum). From this follows 

M. y = 0 , (40) 

which is according to (36) and (37) equivalent to conservation of the total mass 
(1—8). The vector M can be expressed as 

M = £ £X • (41) 
0 1 = 1 

From this and Eqs (36) and (37) we obtain 

= a = 1, 2, ..., n , (42) 
( 0 = 1 

which is an equivalent expression of the postulate (32). 
Now we choose n — h linearly independent vectors gp in the reaction subspace "f 

as its base. These can be expressed as 

gp = £pp«ea, p = 1,2,...,n-h, (43) 
a = 1 

where the (n — h) x n matrix ||i5p3t|| is called the matrix of stoichiometrical coefficients, 
has the rank n — h and fulfils the relations 

t s ^ P f * = 0 , co = 1,2 ,...,h;p = 1,2 ,...,n-h, (44) 
a = 1 

which follow from the orthogonality of the vectors of the bases of the subspaces 
if and f (38), (39) and (43). On multiplying Eq. (44) with Ea and summing over 
co = 1, 2 , . . . , h we obtain with the use of (42) the relations 

YPpaMa = 0 , p = 1 , 2 , . . . , n-h, (45) 
a = 1 
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which express n — h independent chemical reactions chosen to describe the reacting 
mixture (if we substitute for Ma the corresponding chemical symbols). We shall 
consider as reaction products such constituents in the p-th reaction for which the 
value of Ppa is positive, and as starting substances those for which this value is negative. 
Eqs (39) allow us to write 

f = l / P g p , (46) 
P= i 

where (p = 1,2,..., n — h) can be called the rate of the p-th chemical reaction. 
Indeed, according to (37) and (43) 

r = £fPPP*> oc = l,2,...,n. (47) 
p= x 

Now we define in the constituent space the vector of the molar chemical potential 

H = t W . (48) 
a= 1 

This vector can be uniquely decomposed into its projections A and B into the mutually 
orthogonal and complementary subspaces 'f and iV: 

// = A + B , (49) 

where p e A e f , B e iV. The vector A can be called the affinity vector, since 
according to (49) 

A ^ Z A% (50) 
P= i 

and its components Ap represent the affinities of the individual independent chemical 
reactions chosen for the description (by the choice of the base (43)). Indeed, according 
to Eqs (43), (48)-(50) 

Ap = /i-gp = £ HaMaPpl, p = 1 , 2 , . . n - h , (51) 
a = 1 

which is the definition of the affinity of the p-th chemical reaction10 (differing from 
the classical one by the sign). 

We now apply this vector formalism to the inequality (1 —55), which can be with 
the use of (1 -8), (33), (37), (47)-(50) written as 

- - O r" = - t MV = ~ f i f = - A . f - - Z h ^ P / P ^ 0 . (52) 
p = l a = 1 p=1 
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With the assumption that the functions = ft(T, gy) (a, y = 1,2,...,«) are in-
vertible with respect to the densities Qy, these inversions can be introduced into the 
constitutive equation (1—40), which can be with the use of (34), (37), (48) and (49) 
written in the form 

f = #(T,n) = f(T,A + B). (53) 

If this function is continuous with respect to /i then it is necessary for the inequality 
(52) to hold that 

# = f(T, 0 + B) = 0 for A = 0 . (54) 

Indeed, if we fix B, choose A1 arbitrarily and set Ap = 0 for p = 2, 3. ..., n — h, we 
obtain from the continuity of the function (53) and from (52) f x = 0 for A = 0; 
then we choose A2 arbitrarily and so on, until we arrive at (54). 

It can hence be concluded that for chemical reactions the constitutive equation can 
be expressed by Eq. (53), which is generally nonlinear in A with the property (54), 
i.e. by constitutive equations for n — h rates of chemical reactions yp nonlinearly 
dependent on the affinities of all reactions AT (p, r = 1, 2, ..., n — h) in such a way 
that the reaction rates are equal to zero if all the affinities are equal to zero. The 
reaction rates depend only on the affinities, temperature T and densities ga through 
certain combinations of chemical potentials following from B. The deduction of the 
mass action law of chemical kinetics will be shown in the subsequent paper16. 

Equilibrium 

In rational thermodynamics, the equilibrium is defined as a special case of the choice 
of independent variables in constitutive equations2 '3. We shall make this choice 
so that we might arrive at the classical concept of the equilibrium (as a special case). 
In our material we define the equilibrium by 

d^ = 0 , FiP = 0 , dT/dXi = 0 , Ap = 0 , 

a = l , 2 , . . . , n , (3 = 1, 2, ..., n — 1 , p = 1, 2, ..., n — h (55) 

(d*j is the partial deformation rate tensor (1—15)). Then it follows from (1—23), 
(1 —53) and (1 —54) that the entropy production is zero 

<7 = 0 (56) 

and no chemical reactions proceed in the mixture (with the use of (34) and (54)): 

r* = 0 , a = 1, 2, . . . , « . (57) 
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In the equilibrium, the partial pressure it" and thermodynamic pressure Pa for all 
constituents are identical since, owing to Eqs (55) and (57), Eq. (1 —56) holds. 

We shall briefly mention other results since with respect to Eq. (57) the procedure 
is analogous as for nonreacting mixtures7,8. The constitutive equations (1—21), 
(l — 22) and (l — 44) are in the equilibrium reduced to the form 

= -PaSi}, a = 1,2,..., n (58) 

(i.e., the total stress in the equilibrium is also reduced to the thermodynamic pressure 
P, Eq- (2)), 

k\ = i COdeyldxi , J{= 0 , p = 1, 2, .. . , n -1 (59), (60) 
7 = 1 

(the heat flux in the equilibrium is equal to zero). The other constitutive equations 
(1 —41) —(1 —43) remain in the equilibrium without change (the constitutive equation 
(1—40) is according to (57) identically zero). 

Now we can introduce all these relations into the general postulates (conservation 
laws) in the preceding work1. We note that from Eqs (14), (15), (55), (57), (59), 
(1 — 8) and (1 —9) follows in the equilibrium that the velocities of all constituents are 
the same 

v* = v; , a = 1, 2, n (61) 

and we have 

-dP^dx, + k\ = -Qa d^jdx, , a = 1 2, .. . , n . (62) 

The resulting relations are the same as in refs7 '8 and therefore we concentrate our-
selves on their notation in the special case of the traditional equilibrium concept 
expressed by the additional conditions for a = 1, 2,..., n 

R = 0 , dipt = 0 , dvjdt = 0 , dQa/dt = 0 (63) 

(no time changes proceed and we neglect the source of heat R, for example by radia-
tion). In this case, the general postulates expressing the preservation of mass (l — l), 
( 2 -2 ) , momentum (1—3), (1—4), energy (1-11), and the second law of thermo-
dynamics (1-7) take the form for a = 1, 2, ..., n 

v{ dQaldXi = 0 , v. dejdxi = 0 , (64), (65) 

^vi(8vildxi - dvjdxj = -difjdx, + F* , (66) 

iQvj(dvildxi - dvjdxj = -dPjdxj + t Q*f* > (<57) 
a = 1 

Co l l ec t ion Czechos lov . Chem. Commun . [Vol. 40] [1975] 



3432 Samohyl: 

Vi du/dxj = 0 , v{ ds/dXi = 0 (68), (69) 

(Fa in (66) and (67) means the volume force acting upon the constituent a). The 
preservation of the moment of momentum (1 — 10) is trivially fulfilled by Eq. (58). 
From these equations follow the traditional cases of the equilibrium: 

Equilibrium in the centrifugal force field (for all F\ = 0; the expressions on the 
left side of Eqs (66) and (67) contain the spin tensor), 

equilibrium in the external force field (for v{ — 0; Eqs (66) and (67) represent . 
"barometric formulas"), 

equilibrium in a uniform (called traditionally "homogeneous") system. It takes 
place if all volume forces F\ and the spin tensor (i.e. the left sides of Eqs (66) and 
(67)) are equal to zero; v{ is independent of coordinates and time owing to (55) and 
(63). According to the Galilei's relativity principle, v{ can be an arbitrary constant 
and thus from Eqs (5), (16), (64)—(69) follows the uniformity of the properties of 
such an equilibrium system for a = 1, 2 , . . . , » : 

dg'ldx; = dT/dx{ = dP/dx, = dyajdxK = dy/dx-, = 0 . (70) 

In a volume V of a uniform equilibrium system it is possible to introduce extensive 
quantities — the mass, ma, o f constituent a, the mass, ra, of the mixture, and the 
quantities y (comprising internal energy, entropy, enthalpy, free energy, free enthalpy, 
and volume) as 

m=gV, ma = Q"V, Y = my , a = 1, 2, . . . , n. (71) 

By their use we can derive the classical thermodynamic relations if we define the 
function 7 (by using (l —46) and (16)): 

Y = my(T, P, w\ w2, ..wn~l) = Y(T, P, m 1 , m2 , . . m n ) . (72) 

For example, the classical relation used (in molar quantities) as a definition of partial 
quantities in classical thermodynamics of uniform systems 

dYldma = yx, a = 1, 2, n (73) 

follows by using Eq. (18). However, we emphasize that this is true only if the additional 
condition (19) holds. 

Other classical relations for a uniform equilibrium system (Gibbs equation, Gibbs-
Duhem equation, etc.) follow easily from the relations mentioned in the section about 
thermodynamic structure7 , 8 . 
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Comparison with Irreversible Thermodynamics 

It is obvious from the results mentioned so far that the local equilibrium principle of 
irreversible thermodynamics10 applies for the material model studied in the present 
work. However, it should be mentioned that if chemical reactions take place, the 
thermodynamic pressure Pa need not be identical with the pressure na in the constitu-
tive equation for the partial stress tensor (7—22) and that a complete agreement 
with the classical thermodynamics of solutions is obtained only after considering the 
form invariance discussed above. 

The chemical reaction rates depend on the affinities generally nonlinearly and owing 
to the admissibility principle1 they do not depend on the deformation rate tensors 
d*j (compare Eqs(l —33), (1 — 40) and (53)), i.e., in this material no interaction between 
chemical reactions and linear friction, assumed in irreversible thermodynamics10, 
exists. 

For an explicit comparison with irreversible thermodynamics (with results which 
are based on similar balances11 '12 as ref.1) we express the diffusion flux q?V[ from the 
constitutive equation (1—21) using the balance (1—3) and the following definitions 
of the traditional concepts: Isothermal gradient of the chemical potential 

(d^jdxi)x = d^/dxi + sccdTjdxi , a - 1 ,2, ..., n , (74) 

partial friction tensor 

= - ( / + t Cydlk) dij - t 2r]ayd0t, a = 1, 2, ..., n (75) 
Y=1 Y=1 

(dlk and d°] are the trace and the divergenceless part of dj]) and the driving force of 
diffusion 

1 \8xJr
 1 foj Qp dt Q

p dx} e
p 

with P = 1,2, . . . , n — 1. So the equation for the diffusion flux takes the classical 
form 

n-l r rjpd-] r n - l -06 / 
-Q*v* = Z qV— + E q*t — (&<* - —) 

P = 1 |_ v J | _ P = 1 V \ T J 
(77) 

OXi 

with 6 = 1, 2 , . . n — 1; v is the determinant (assumed nonzero) and vps the algebraic 
complement of the element vpd of the coefficient matrix ||v^|| in the constitutive 
equation (1—21). On introducing Eq. (77) into the constitutive equation (1—44) 
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we obtain the classical expression for the heat flux 

n - 1 r n - 1 r n - 1 n - 1 -Sp / ; < 5 \ " 

= l — U t + U T - ^ t x ^ — ( a ' - M 
8 = 1 |_ p = l V J |_ p = l 5 = 1 V \ T J _ 

The expressions in brackets in Eqs (77) and (78) are the phenomenological coefficients 
of irreversible thermodynamics expressed in terms of the constitutive equations (1 — 21) 
and (1 —44), and therefore they are functions only of T and GL, Q2, ..., GA . Relation 
of the vp5 to diffusion coefficients follows f rom (76) and (77) when the isothermal 
gradients (74) are expressed by concentration gradients. 

The driving force (76) can be obtained also by irreversible thermodynamics by 
rewriting the second and the last terms on the right side of Eq. (5) in ref.12 in the 
form (with the use of the usual definitions of the barycentric diffusion flux and diffu-
sion flux referred to the n-th constituent): 

rt> V? + , (79) 
p = i p = i 

whence it follows by traditional arguments12 that Eq. (76) is justified. In contrast to 
nonreacting mixtures7 ,8, however, the driving force (76) does not obey the Prigogine 
theorem1 0 , 1 2 . 

The Onsager reciprocal relations are in the envisaged material generally invalid 
as can be seen from Eqs (77) and (78). Their validity, however, can be simply achieved 
by the following additional assumptions: 

= = 0 , P, 5 = 1, 2, . . . , h - 1 . (80) 

We note that if these assumptions apply, then in a special material (in which a relation 
analogous to (1 — 50) in partial quantities applies — compare the end of the section 
about thermodynamic structure and the definition (1—39)) we obtain the classical 
Onsagerian symmetry between the coefficients of the constitutive equations (l —21) and 
(1-44). 

It can be concluded that by the method of rational thermodynamics it is possible 
to obtain most of the results of the classical equilibrium and nonequilibrium thermo-
dynamics, and this in a manner excluding the problematicity of some postulates of 
these theories2. Moreover, the classical results represent only a minority of the pos-
sibilities of rational thermodynamics2 '3 . 

a In T 
dx{ 

(78) 
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